If it's not what You are looking for type in the equation solver your own equation and let us solve it.
15x^2-96x+81=0
a = 15; b = -96; c = +81;
Δ = b2-4ac
Δ = -962-4·15·81
Δ = 4356
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{4356}=66$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-96)-66}{2*15}=\frac{30}{30} =1 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-96)+66}{2*15}=\frac{162}{30} =5+2/5 $
| -65-4b=6b-11 | | 115x^2-96x+81=0 | | 5/99=-1/9n | | -80+4a=28-5a | | 12y=48-3y | | 6a+10=a-35 | | 6a+12=4a+20 | | -x^2+2x=0.6 | | 2x^2+36-80=0 | | 16t-t×t×t=0 | | 3r^2-3=3(4r^2-6) | | F(4x)=3x+7 | | 3z-17+2z=17 | | -3•x+11=-1 | | 3r^2-15=12r^2 | | 20+2x=960-3x | | 9^x-6^x=2(4^x) | | w^2+8w+33=0 | | (X-3)x2=(x+2)x3 | | 4x^{^3}+24x^2+3=0 | | 9c/5=180 | | -38=4(x-5)-7x | | 7x2+9x=10 | | 7x^2+16x-144=0 | | 8y-5=2y+19 | | 12m²-9m³= | | 2(u+5)-4u=12 | | x2+10=6x | | 60=16+6/11d | | -8v+5(v-6)=-24 | | x/2-3/2=2x/2-1/2 | | P=16+4/13d |